Using theoretical ROC curves for analysing machine learning binary classifiers
نویسندگان
چکیده
منابع مشابه
ROC analysis of classifiers in machine learning: A survey
The use of ROC (Receiver Operating Characteristics) analysis as a tool for evaluating the performance of classification models in machine learning has been increasing in the last decade. Among the most notable advances in this area are the extension of two-class ROC analysis to the multi-class case as well as the employment of ROC analysis in cost-sensitive learning. Methods now exist which tak...
متن کاملDutch football prediction using machine learning classifiers
Sports betting is becoming more popular every year and more people are betting now than ever. With the growth of the betting market comes the growth of research done on match prediction. Research done in the 1950s has been the basis for match predictions up until the 1980s. Since then prediction techniques have shifted from distribution prediction towards a more modern data mining predicting. U...
متن کاملLearning curves for Soft Margin Classifiers
Typical learning curves for Soft Margin Classifiers (SMCs) learning both realizable and unrealizable tasks are determined using the tools of Statistical Mechanics. We derive the analytical behaviour of the learning curves in the regimes of small and large training sets. The generalization errors present different decay laws towards the asymptotic values as a function of the training set size, d...
متن کاملROC Curves for Steganalysts
There are different approaches in the literature for the assessment of steganographic algorithms and steganalytic attacks. In the early papers it was considered sufficient to show the existence of an effect for one or a few examples only. The more the area of steganography evolved, the more diverse became the goals and the harder to measure the improvements. Many branches of science are facing ...
متن کاملLearning Binary Classifiers for Multi-Class Problem
One important idea for the multi-class classification problem is to combine binary classifiers (base classifiers), which is summarized as error correcting output codes (ECOC), and the generalized Bradley-Terry (GBT) model gives a method to estimate the multi-class probability. In this memo, we review the multi-class problem with the GBT model and discuss two issues. First, a new estimation algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2019
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2019.10.004